Algebra CCSS Lesson Plans

Teacher: Angela Estrada
Week: Jan. 22-26, 2024

DATE	OBJECTIVES	BELL RINGER	$\begin{array}{\|c\|} \hline \text { ANTICIPATORY } \\ \text { SET } \end{array}$	PROCEDURES	ASSESSMENT	CLOSURE
MONDAY	The student will be able to: 1. Use the structure of an expression to identify ways to rewrite it. A.SSE. 2 2. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. A.SSE. 3 Essential Question: Can I factor polynomials and determine which method is best for factoring?	ACT Practice Test	ACT Test Taking Strategies	1. Room Assignments for the MOCK ACT 2. Mixed PracticeFactoring Polynomials HW) Mixed Practice of Factoring Polynomials	Observation/ Participation Student Feedback	Concerns Regarding Polynomial Concepts Tutoring Schedule Reminder: Monday afternoon until 4:30 Tutoring Daily at 8:00 a.m.
TUESDAY	The student will be able to complete the MOCK ACT with at least 65% or more accuracy. Essential Question: Can I complete the MOCK ACT with at least 65% or more accuracy?	MOCK ACT	MOCK ACT	1. MOCK ACT 2. Classes meeting after the Mock ACT: Recap of Factoring Polynomials	Mock ACT	AM- Mock ACT Later Classes: Factoring Polynomials

	Later Classes: Can I factor polynomials and determine which method is best for factoring?					
WEDNESDAY	The student will be able to: 1. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. F.IF. 7 2. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal description. F.IF. 9 Essential Question: Can I analyze graphing characteristics of Quadratics to determine the vertex, axis of symmetry, and turning points (maximum or minimum)?	Analyzing Quadratic Graphs	Exploration of Using Calculators to Sketch Graphs Vocabulary Support: *Vertex *Axis of Symmetry *Turning Points- *Minimum *Maximum	Introduction to Quadratic Equations: Graphing Characteristics- Standard Form, Axis of Symmetry, Vertex, Minimum, Maximum: Standard Form of a Quadratic Equation: $y=$ $a x^{2}+b x+c$ Types of Parabolas: Positive and Negative Axis of Symmetry Formula: $\quad \mathbf{x}=-\frac{b}{2 a}$ Emphasis: Given quadratic equations, determine the following aspects: Vertex, Axis of Symmetry, And Turning Points (Maximum or Minimum) *Findings will be	Portfolio Points Teacher Observation Student Feedback- Boards and Written Responses	What pattern characteristics can you share for quadratic models?

				checked with graphing calculators or desmos.com upon completion. HW) Charact. Of Quadratics Equations WS \#1		
THURSDAY	The student will be able to: 1. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. F.IF. 7 2. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal description. F.IF. 9 Essential Question: Can I graph and analyze key features of quadratic functions?	Cumulative Mixed Practice	Calculators: Solving Quadratic Equations by Tables and Graphs	Graphing Quadratic Functions: 1. Steps for Graphing 2. Graphing Each Quadratic using a Table and Identifying: AOS, Vertex, Domain, and Range 3. Analyzing Quadratic Graphs including Minimum, Maximum, Domain, and Range Graphing Quadratic Equations WS \#2	Portfolio Points Teacher Observation Student Feedback- Boards and Written Responses	Analyze classmate responses.

FRIDAY	The student will be able to: 1. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. F.IF. 7 2. Graph linear and quadratic functions and show intercepts, maxima, and minima. F.IF.7. a 3. Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x$ $+k$) for specific values of k. Find the values of k. F.BF. 3	ACT Practice Test Analysis	Brainstorm Previous Knowledge of Graphing Quadratics	Vertex Form of a Quadratic Equation and Transformations Vertex Form of a Quadratic Equation: $y=a(x-h)^{2}+k$: 1. Given an equation in vertex form, determine the AOS and vertex. 2. Graph using table of values and determine the following aspects: Axis of Symmetry, Vertex, Domain and Range of the Graph 3. Begin transformations from the quadratic parent function of $y=x^{2}$. Compare transformations.	Teacher Observation Student Feedback Graphing Calculator Skills For Checking Solutions	Graphing Analysis- Creations of Tables and Graphing Responses

